Some new examples of Hopf–Galois structures in which the Hopf–Galois correspondence is surjective

Lorenzo Stefanello

Joint work with Senne Trappeniers

Hopf algebras and Galois module theory, 31 May 2022

- Preliminaries in Hopf–Galois theory
- The known connection between HG and SB
- A new connection between HG and SB
- New examples of surjective correspondences

Preliminaries in Hopf–Galois theory

Let L/K be a finite Galois extension with Galois group G.

A Hopf–Galois structure on L/K consists of a K-Hopf algebra H together with an action * of H on L such that

- *L* is an *H*-module algebra;
- the following K-linear map is bijective:

 $L \otimes_{\mathcal{K}} H \to \operatorname{End}_{\mathcal{K}}(L), \quad x \otimes h \mapsto (y \mapsto x(h * y)).$

Example

The *classical* structure consists of K[G] with the usual Galois action.

Recall that a subgroup N of Perm(G) is regular if |N| = |G| and N acts transitively on G.

Example

- $N = \lambda(G)$, where $\lambda(g)[h] = gh$;
- $N = \rho(G)$, where $\rho(g)[h] = hg^{-1}$.

Theorem ([Greither and Pareigis, 1987])

Hopf–Galois structures on L/K correspond bijectively to regular subgroups of Perm(G) normalised by $\lambda(G)$.

Explicitly, $N \leftrightarrow L[N]^G$, where G acts on L via Galois action and on N via conjugation by $\lambda(G)$. Moreover, $L[N]^G$ acts on L as follows:

$$\left(\sum_{\eta\in \mathsf{N}}\mathsf{a}_\eta\eta
ight)*x=\sum_{\eta\in \mathsf{N}}\mathsf{a}_\eta(\eta^{-1}[1])(x)$$

Example

- $N = \rho(G)$ yields the classical structure.
- $N = \lambda(G)$ yields the canonical nonclassical structure.

The *type* of the structure is the isomorphism class of N.

Let $H = L[N]^G$ give a Hopf–Galois structure on L/K. For all K-sub Hopf algebras H' of H, we can consider an intermediate field

$$L^{H'} = \{x \in L \mid h' * x = \varepsilon(h')x \text{ for all } h' \in H'\}.$$

We obtain in this way the *Hopf–Galois correspondence*, which is injective but not necessarily surjective.

- For N = ρ(G), we find the classical Galois correspondence, which is surjective.
- For $N = \lambda(G)$, exactly the normal intermediate fields are in the image of the correspondence [Greither and Pareigis, 1987].

Problem

Study when the Hopf-Galois correspondence is surjective.

Theorem ([Crespo et al., 2016])

K-sub Hopf algebras of $L[N]^G$ correspond bijectively to subgroups of N normalised by $\lambda(G)$. Explicitly, $N' \leftrightarrow L[N']^G$.

This provides a correspondence between subgroups of N normalised by $\lambda(G)$ and subgroups of G [Koch et al., 2019], which is "mysterious" but can be shown "quantitatively" to be surjective in some examples.

The known connection between HG and SB

Definition ([Guarnieri and Vendramin, 2017])

A skew brace $(A, +, \star)$ consists of two groups (A, +) and (A, \star) related by the following property: for all $a, b, c \in A$,

$$a \star (b + c) = (a \star b) - a + (a \star c).$$

Each skew brace is associated with a gamma function

$$\gamma \colon (A,\star) \to \operatorname{Aut}(A,+), \quad a \mapsto (b \mapsto -a + (a \star b)).$$

Example

- (A, +, +) is the *trivial skew brace*.
- $(A, +^{op}, +)$ is the almost trivial skew brace.

More in general, if $(A, +, \star)$ is a skew brace, then $(A, +^{op}, \star)$ is a skew brace [Koch and Truman, 2020], called the *opposite skew* brace.

Definition ([Childs, 2019])

A *bi-skew brace* is a skew brace $(A, +, \star)$ such that also $(A, \star, +)$ is a skew brace.

Definition

Let $(A, +, \star)$ be a skew brace.

A *left ideal* A' is a subgroup of A with respect to both operations such that for all a ∈ A and a' ∈ A',

$$\gamma^{(a)}(a') = -a + (a \star a') \in \mathcal{A}'.$$

• An *ideal* is a left ideal with (A', +) normal in (A, +) and (A', \star) normal in (A, \star) .

Let L/K be a finite Galois extension with Galois group (G, \cdot) .

- Let H = L[N]^G give a Hopf–Galois structure on L/K. Then N is a regular subgroup of Perm(G) normalised by λ(G). Transport the structure of N to G to find (G, ◦). Then (G, ◦, ·) is a skew brace.
- Let (A, +, *) be a skew brace with (A, *) ≅ (G, ·). Use this isomorphism to obtain a skew brace (G, ∘, ·). Take N = λ₀(G).

Then $L[N]^G$ gives a Hopf–Galois structure on L/K.

Example

- The classical structure given by N = ρ(G) yields the almost trivial skew brace (G, ·^{op}, ·).
- The canonical nonclassical structure given by N = λ(G) yields the trivial skew brace (G, ·, ·).

Rewriting the correspondence (again) $(L/K, (G, \cdot))$

Let $H = L[N]^G$ give a Hopf–Galois structure on L/K, and let (G, \circ, \cdot) be the corresponding skew brace.

Theorem ([Childs, 2018])

Subgroups of N normalised by $\lambda(G)$ correspond bijectively to subgroups of (G, \circ) which are \cdot -stable. Here a subgroup G' of (G, \circ) is \cdot -stable if for all $g \in G$ and $g' \in G'$,

 $g\cdot (g'\circ g^{-1})\in G'.$

Example

Suppose that (G, \cdot) is cyclic of order p^n , where p is an odd prime. Then N is cyclic [Kohl, 1998] and the Hopf–Galois correspondence is surjective [Childs, 2017].

 $(L/K, H, (G, \circ, \cdot))$

Problem ([Childs, 2021])

Study the ratio

$$GC(L/K, H) = \frac{|\{\text{fields in the image of the HG correspondence}\}|}{|\{\text{intermediate fields}\}|}$$
$$= \frac{|\{\cdot\text{-stable subgroups of } (G, \circ)\}|}{|\{\text{subgroups of } (G, \cdot)\}|}.$$

Proposition ([Koch and Truman, 2020]) \cdot -stable ideals of (G, \circ , \cdot) coincide with left ideals of (G, \circ^{op} , \cdot).

A new connection between HG and SB

- 1. Use the opposite skew brace.
- 2. Make the connection a bijection.
- 3. Forget about the regular subgroup.

Let L/K be a finite Galois extension with Galois group (G, \cdot) .

Theorem

The following data are equivalent:

- a Hopf–Galois structure on L/K;
- an operation \circ such that (G, \circ, \cdot) is a skew brace.

Explicitly, $(G, \circ, \cdot) \leftrightarrow L[G, \circ]^{(G, \cdot)}$, where (G, \cdot) acts on L via Galois action and on (G, \circ) via the gamma function γ of (G, \circ, \cdot) . Moreover, $L[G, \circ]^{(G, \cdot)}$ acts on L as follows:

$$\left(\sum_{\sigma\in \mathsf{G}}\mathsf{a}_{\sigma}\sigma
ight)*x=\sum_{\sigma\in \mathsf{G}}\mathsf{a}_{\sigma}\sigma(x).$$

Example

- The classical structure is associated with the trivial skew brace.
- The canonical nonclassical structure is associated with the almost trivial skew brace.

The *type* of the structure is the isomorphism class of (G, \circ) .

Consider the Hopf–Galois structure associated with a skew brace (G, \circ, \cdot) .

Proposition

Left ideals of (G, \circ, \cdot) correspond bijectively to K-sub Hopf algebras of $L[G, \circ]^{(G, \cdot)}$.

Explicitly, $(G', \circ, \cdot) \leftrightarrow L[G', \circ]^{(G, \cdot)}$.

Fact

Let (G', \circ, \cdot) be a left ideal of (G, \circ, \cdot) , and consider $H' = L[G', \circ]^{(G, \cdot)}$. Then

$$L^{G'}=L^{H'}.$$

Ideals

 $(L/K, (G, \circ, \cdot))$

Let (G', \circ, \cdot) be an ideal of (G, \circ, \cdot) , and take $F = L^{G'}$. We find a short exact sequence of K-Hopf algebras

$$K \to L[G', \circ]^{(G, \cdot)} \to L[G, \circ]^{(G, \cdot)} \to L[G/G', \circ]^{(G, \cdot)} \to K.$$

 L/F is Galois with Galois group (G', ·), the skew brace (G', ∘, ·) gives a Hopf–Galois structure on L/F, and

$$L[G',\circ]^{(G',\cdot)} = F \otimes_{K} L[G',\circ]^{(G,\cdot)}$$

• F/K is Galois with Galois group $(G/G', \cdot)$, $(G/G', \circ, \cdot)$ gives a Hopf–Galois structure on F/K, and

$$L[G/G',\circ]^{(G/G',\cdot)}=L[G/G',\circ]^{(G,\cdot)}.$$

We can translate in setting of Hopf-Galois theory

- strong left ideals;
- direct product of skew braces;
- semidirect product of skew braces;
- short exact sequence of skew braces;
- right nilpotency of skew braces.

New examples of surjective correspondences

Rewriting the correspondence (for the last time!)

Let L/K be a finite Galois extension with Galois group (G, \cdot) .

Corollary

Consider the Hopf–Galois structure associated with a skew brace (G, \circ, \cdot) .

- The Hopf–Galois correspondence is surjective if and only if every subgroup of (G, ·) is a left ideal of (G, ∘, ·).
- An intermediate field $K \leq L^{G'} \leq L$, for G' subgroup of (G, \cdot) , is in the image of the Hopf–Galois correspondence if and only if G' is a left ideal of (G, \circ, \cdot) .

Finally,

$$GC(L/K, L[G, \circ]^{(G, \cdot)}) = \frac{|\{\text{left ideals of } (G, \circ, \cdot)\}|}{|\{\text{subgroups of } (G, \cdot)\}|}.$$

Let L/K be a finite Galois extension with Galois group (G, \cdot) , and consider a Hopf–Galois structure such that the corresponding skew brace (G, \circ, \cdot) is a bi-skew brace with gamma function γ .

Fact

For all $g \in G$, $\gamma(g) \in Aut(G, \cdot)$.

Proposition

All the intermediate fields $F = L^{G'}$ with G' characteristic in (G, \cdot) are in the image of the Hopf–Galois correspondence.

Corollary

Suppose that (G, \cdot) is cyclic. Then the Hopf–Galois correspondence is surjective.

Example

Suppose that (G, \cdot) is cyclic of order 8. By [Rump, 2007] and easy considerations, there exists a bi-skew brace (G, \circ, \cdot) with $(G, \circ) \cong Q_8$. In particular, the Hopf–Galois correspondence in the associated Hopf–Galois structure is surjective.

Suppose that $\gamma: G \to \text{Inn}(G, \cdot)$ is surjective.

Proposition

The image of the Hopf–Galois correspondence consists precisely of the normal intermediate fields.

Write $\iota(g)$ for the conjugation by g.

Example

- The gamma function of $(G, \cdot^{\mathrm{op}}, \cdot)$ is $\gamma(g) = \iota(g)$.
- Suppose that (G, \cdot) has nilpotency class two, and take

$$g \circ h = g \cdot h \cdot [g, h].$$

By [Caranti and LS, 2022], (G, \circ, \cdot) is a bi-skew brace with gamma function $\gamma(g) = \iota(g^{-1})$.

Recall that $\psi \in Aut(G, \cdot)$ is a *power automorphism* if $\psi(G') \leq G'$ for all subgroups G' of (G, \cdot) .

Proposition

The Hopf–Galois correspondence is surjective if and only if for all $g \in G$, $\gamma(g) \in Aut(G, \cdot)$ is a power automorphism.

Recall that the norm N(G) of (G, \cdot) is the intersection of the normalisers of the subgroups of (G, \cdot) .

Fact

 $\iota(g)$ is a power automorphism if and only if $g \in N(G)$.

Let L/K be a finite Galois extension with Galois group (G, \cdot) . Theorem ([Schenkman, 1960])

N(G) is contained in the second center $Z_2(G)$ of (G, \cdot) .

In particular, we can apply [LS and Trappeniers, 2022] to deduce that each different homomorphism $\psi: (G, \cdot) \rightarrow N(G)/Z(G)$ yields a different operation

$$\mathsf{g}\circ_\psi\mathsf{h}=\mathsf{g}\cdot\psi(\mathsf{g})\cdot\mathsf{h}\cdot\psi(\mathsf{g})^{-1}$$

such that (G, \circ_{ψ}, \cdot) is a bi-skew brace, and for the associated Hopf–Galois structure the Hopf–Galois correspondence is surjective.

Let L/K be a Galois extension with Galois group $(G, \cdot) = Q_8$. Here N(G) = G, and the 16 different homomorphisms

$$G \to G/Z(G) \cong C_2 \times C_2$$

yield 16 different Hopf–Galois structures on L/K for which the Hopf–Galois correspondence is surjective.

Let (G, \circ, \cdot) be a finite bi-skew brace, let L/K be a Galois extension with Galois group (G, \cdot) , and let M/F be a Galois extension with Galois group (G, \circ) .

Fact

Left ideals of (G, \circ, \cdot) and (G, \cdot, \circ) coincide.

Thus, the Hopf algebras $L[G, \circ]^{(G, \cdot)}$ and $M[G, \cdot]^{(G, \circ)}$ have the "same" lattice of sub Hopf algebras, and the same number of intermediate fields is in the image of the two Hopf–Galois structures.

Finally,

$$\frac{GC(L/K, L[G, \circ]^{(G, \cdot)})}{GC(M/F, M[G, \cdot]^{(G, \circ)})} = \frac{|\{\text{subgroups of } (G, \circ)\}|}{|\{\text{subgroups of } (G, \cdot)\}|}.$$

📄 Caranti, A. and LS (2022).

Brace blocks from bilinear maps and liftings of endomorphisms. *arXiv:2110.11028*.

📔 Childs, L. N. (2017).

On the Galois correspondence for Hopf Galois structures. *New York J. Math.*, 23:1–10.

📄 Childs, L. N. (2018).

Skew braces and the Galois correspondence for Hopf Galois structures.

J. Algebra, 511:270–291.

📄 Childs, L. N. (2019).

Bi-skew braces and Hopf Galois structures. *New York J. Math.*, 25:574–588.

📔 Childs, L. N. (2021).

On the Galois correspondence for Hopf Galois structures arising from finite radical algebras and Zappa-Szép products. *Publ. Mat.*, 65(1):141–163.

盲 Crespo, T., Rio, A., and Vela, M. (2016). 👘

On the Galois correspondence theorem in separable Hopf Galois theory. *Publ. Mat.*, 60(1):221–234.

- Greither, C. and Pareigis, B. (1987).
 Hopf Galois theory for separable field extensions.
 J. Algebra, 106(1):239–258.
- Guarnieri, L. and Vendramin, L. (2017).
 Skew braces and the Yang-Baxter equation.
 Math. Comp., 86(307):2519–2534.

Bibliography III

- Koch, A., Kohl, T., Truman, P. J., and Underwood, R. (2019). Normality and short exact sequences of Hopf-Galois structures. *Comm. Algebra*, 47(5):2086–2101.
- Koch, A. and Truman, P. J. (2020). Opposite skew left braces and applications. J. Algebra, 546:218–235.
- 📔 Kohl, T. (1998).

Classification of the Hopf Galois structures on prime power radical extensions.

J. Algebra, 207(2):525–546.

LS and Trappeniers, S. (2022). On bi-skew braces and brace blocks. arXiv:2205.15073.

Rump, W. (2007).

Classification of cyclic braces. J. Pure Appl. Algebra, 209(3):671–685.

Schenkman, E. (1960).
 On the norm of a group.
 Illinois J. Math., 4:150–152.